Server IP : 103.119.228.120 / Your IP : 3.144.43.194 Web Server : Apache System : Linux v8.techscape8.com 3.10.0-1160.119.1.el7.tuxcare.els2.x86_64 #1 SMP Mon Jul 15 12:09:18 UTC 2024 x86_64 User : nobody ( 99) PHP Version : 5.6.40 Disable Function : shell_exec,symlink,system,exec,proc_get_status,proc_nice,proc_terminate,define_syslog_variables,syslog,openlog,closelog,escapeshellcmd,passthru,ocinum cols,ini_alter,leak,listen,chgrp,apache_note,apache_setenv,debugger_on,debugger_off,ftp_exec,dl,dll,myshellexec,proc_open,socket_bind,proc_close,escapeshellarg,parse_ini_filepopen,fpassthru,exec,passthru,escapeshellarg,escapeshellcmd,proc_close,proc_open,ini_alter,popen,show_source,proc_nice,proc_terminate,proc_get_status,proc_close,pfsockopen,leak,apache_child_terminate,posix_kill,posix_mkfifo,posix_setpgid,posix_setsid,posix_setuid,dl,symlink,shell_exec,system,dl,passthru,escapeshellarg,escapeshellcmd,myshellexec,c99_buff_prepare,c99_sess_put,fpassthru,getdisfunc,fx29exec,fx29exec2,is_windows,disp_freespace,fx29sh_getupdate,fx29_buff_prepare,fx29_sess_put,fx29shexit,fx29fsearch,fx29ftpbrutecheck,fx29sh_tools,fx29sh_about,milw0rm,imagez,sh_name,myshellexec,checkproxyhost,dosyayicek,c99_buff_prepare,c99_sess_put,c99getsource,c99sh_getupdate,c99fsearch,c99shexit,view_perms,posix_getpwuid,posix_getgrgid,posix_kill,parse_perms,parsesort,view_perms_color,set_encoder_input,ls_setcheckboxall,ls_reverse_all,rsg_read,rsg_glob,selfURL,dispsecinfo,unix2DosTime,addFile,system,get_users,view_size,DirFiles,DirFilesWide,DirPrintHTMLHeaders,GetFilesTotal,GetTitles,GetTimeTotal,GetMatchesCount,GetFileMatchesCount,GetResultFiles,fs_copy_dir,fs_copy_obj,fs_move_dir,fs_move_obj,fs_rmdir,SearchText,getmicrotime MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /usr/share/doc/postgresql-9.2.24/html/ |
Upload File : |
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML ><HEAD ><TITLE >Authentication Methods</TITLE ><META NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK REV="MADE" HREF="mailto:pgsql-docs@postgresql.org"><LINK REL="HOME" TITLE="PostgreSQL 9.2.24 Documentation" HREF="index.html"><LINK REL="UP" TITLE="Client Authentication" HREF="client-authentication.html"><LINK REL="PREVIOUS" TITLE="User Name Maps" HREF="auth-username-maps.html"><LINK REL="NEXT" TITLE="Authentication Problems" HREF="client-authentication-problems.html"><LINK REL="STYLESHEET" TYPE="text/css" HREF="stylesheet.css"><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1"><META NAME="creation" CONTENT="2017-11-06T22:43:11"></HEAD ><BODY CLASS="SECT1" ><DIV CLASS="NAVHEADER" ><TABLE SUMMARY="Header navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TH COLSPAN="5" ALIGN="center" VALIGN="bottom" ><A HREF="index.html" >PostgreSQL 9.2.24 Documentation</A ></TH ></TR ><TR ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A TITLE="User Name Maps" HREF="auth-username-maps.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A HREF="client-authentication.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="60%" ALIGN="center" VALIGN="bottom" >Chapter 19. Client Authentication</TD ><TD WIDTH="20%" ALIGN="right" VALIGN="top" ><A TITLE="Authentication Problems" HREF="client-authentication-problems.html" ACCESSKEY="N" >Next</A ></TD ></TR ></TABLE ><HR ALIGN="LEFT" WIDTH="100%"></DIV ><DIV CLASS="SECT1" ><H1 CLASS="SECT1" ><A NAME="AUTH-METHODS" >19.3. Authentication Methods</A ></H1 ><P > The following subsections describe the authentication methods in more detail. </P ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-TRUST" >19.3.1. Trust Authentication</A ></H2 ><P > When <TT CLASS="LITERAL" >trust</TT > authentication is specified, <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > assumes that anyone who can connect to the server is authorized to access the database with whatever database user name they specify (even superuser names). Of course, restrictions made in the <TT CLASS="LITERAL" >database</TT > and <TT CLASS="LITERAL" >user</TT > columns still apply. This method should only be used when there is adequate operating-system-level protection on connections to the server. </P ><P > <TT CLASS="LITERAL" >trust</TT > authentication is appropriate and very convenient for local connections on a single-user workstation. It is usually <SPAN CLASS="emphasis" ><I CLASS="EMPHASIS" >not</I ></SPAN > appropriate by itself on a multiuser machine. However, you might be able to use <TT CLASS="LITERAL" >trust</TT > even on a multiuser machine, if you restrict access to the server's Unix-domain socket file using file-system permissions. To do this, set the <TT CLASS="VARNAME" >unix_socket_permissions</TT > (and possibly <TT CLASS="VARNAME" >unix_socket_group</TT >) configuration parameters as described in <A HREF="runtime-config-connection.html" >Section 18.3</A >. Or you could set the <TT CLASS="VARNAME" >unix_socket_directories</TT > configuration parameter to place the socket file in a suitably restricted directory. </P ><P > Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are not restricted by file-system permissions. Therefore, if you want to use file-system permissions for local security, remove the <TT CLASS="LITERAL" >host ... 127.0.0.1 ...</TT > line from <TT CLASS="FILENAME" >pg_hba.conf</TT >, or change it to a non-<TT CLASS="LITERAL" >trust</TT > authentication method. </P ><P > <TT CLASS="LITERAL" >trust</TT > authentication is only suitable for TCP/IP connections if you trust every user on every machine that is allowed to connect to the server by the <TT CLASS="FILENAME" >pg_hba.conf</TT > lines that specify <TT CLASS="LITERAL" >trust</TT >. It is seldom reasonable to use <TT CLASS="LITERAL" >trust</TT > for any TCP/IP connections other than those from <SPAN CLASS="SYSTEMITEM" >localhost</SPAN > (127.0.0.1). </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-PASSWORD" >19.3.2. Password Authentication</A ></H2 ><P > The password-based authentication methods are <TT CLASS="LITERAL" >md5</TT > and <TT CLASS="LITERAL" >password</TT >. These methods operate similarly except for the way that the password is sent across the connection, namely MD5-hashed and clear-text respectively. </P ><P > If you are at all concerned about password <SPAN CLASS="QUOTE" >"sniffing"</SPAN > attacks then <TT CLASS="LITERAL" >md5</TT > is preferred. Plain <TT CLASS="LITERAL" >password</TT > should always be avoided if possible. However, <TT CLASS="LITERAL" >md5</TT > cannot be used with the <A HREF="runtime-config-connection.html#GUC-DB-USER-NAMESPACE" >db_user_namespace</A > feature. If the connection is protected by SSL encryption then <TT CLASS="LITERAL" >password</TT > can be used safely (though SSL certificate authentication might be a better choice if one is depending on using SSL). </P ><P > <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > database passwords are separate from operating system user passwords. The password for each database user is stored in the <TT CLASS="LITERAL" >pg_authid</TT > system catalog. Passwords can be managed with the SQL commands <A HREF="sql-createuser.html" >CREATE USER</A > and <A HREF="sql-alterrole.html" >ALTER ROLE</A >, e.g., <KBD CLASS="USERINPUT" >CREATE USER foo WITH PASSWORD 'secret'</KBD >. If no password has been set up for a user, the stored password is null and password authentication will always fail for that user. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="GSSAPI-AUTH" >19.3.3. GSSAPI Authentication</A ></H2 ><P > <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN > is an industry-standard protocol for secure authentication defined in RFC 2743. <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > supports <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN > with <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN > authentication according to RFC 1964. <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN > provides automatic authentication (single sign-on) for systems that support it. The authentication itself is secure, but the data sent over the database connection will be sent unencrypted unless <ACRONYM CLASS="ACRONYM" >SSL</ACRONYM > is used. </P ><P > When <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN > uses <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN >, it uses a standard principal in the format <TT CLASS="LITERAL" ><TT CLASS="REPLACEABLE" ><I >servicename</I ></TT >/<TT CLASS="REPLACEABLE" ><I >hostname</I ></TT >@<TT CLASS="REPLACEABLE" ><I >realm</I ></TT ></TT >. For information about the parts of the principal, and how to set up the required keys, see <A HREF="auth-methods.html#KERBEROS-AUTH" >Section 19.3.5</A >. </P ><P > GSSAPI support has to be enabled when <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > is built; see <A HREF="installation.html" >Chapter 15</A > for more information. </P ><P > The following configuration options are supported for <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN >: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >include_realm</TT ></DT ><DD ><P > If set to 1, the realm name from the authenticated user principal is included in the system user name that's passed through user name mapping (<A HREF="auth-username-maps.html" >Section 19.2</A >). This is the recommended configuration as, otherwise, it is impossible to differentiate users with the same username who are from different realms. The default for this parameter is 0 (meaning to not include the realm in the system user name) but may change to 1 in a future version of <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN >. Users can set it explicitly to avoid any issues when upgrading. </P ></DD ><DT ><TT CLASS="LITERAL" >map</TT ></DT ><DD ><P > Allows for mapping between system and database user names. See <A HREF="auth-username-maps.html" >Section 19.2</A > for details. For a GSSAPI/Kerberos principal, such as <TT CLASS="LITERAL" >username@EXAMPLE.COM</TT > (or, less commonly, <TT CLASS="LITERAL" >username/hostbased@EXAMPLE.COM</TT >), the default user name used for mapping is <TT CLASS="LITERAL" >username</TT > (or <TT CLASS="LITERAL" >username/hostbased</TT >, respectively), unless <TT CLASS="LITERAL" >include_realm</TT > has been set to 1 (as recommended, see above), in which case <TT CLASS="LITERAL" >username@EXAMPLE.COM</TT > (or <TT CLASS="LITERAL" >username/hostbased@EXAMPLE.COM</TT >) is what is seen as the system username when mapping. </P ></DD ><DT ><TT CLASS="LITERAL" >krb_realm</TT ></DT ><DD ><P > Sets the realm to match user principal names against. If this parameter is set, only users of that realm will be accepted. If it is not set, users of any realm can connect, subject to whatever user name mapping is done. </P ></DD ></DL ></DIV ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="SSPI-AUTH" >19.3.4. SSPI Authentication</A ></H2 ><P > <SPAN CLASS="PRODUCTNAME" >SSPI</SPAN > is a <SPAN CLASS="PRODUCTNAME" >Windows</SPAN > technology for secure authentication with single sign-on. <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > will use SSPI in <TT CLASS="LITERAL" >negotiate</TT > mode, which will use <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN > when possible and automatically fall back to <SPAN CLASS="PRODUCTNAME" >NTLM</SPAN > in other cases. <SPAN CLASS="PRODUCTNAME" >SSPI</SPAN > authentication only works when both server and client are running <SPAN CLASS="PRODUCTNAME" >Windows</SPAN >, or, on non-Windows platforms, when <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN > is available. </P ><P > When using <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN > authentication, <SPAN CLASS="PRODUCTNAME" >SSPI</SPAN > works the same way <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN > does; see <A HREF="auth-methods.html#GSSAPI-AUTH" >Section 19.3.3</A > for details. </P ><P > The following configuration options are supported for <SPAN CLASS="PRODUCTNAME" >SSPI</SPAN >: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >include_realm</TT ></DT ><DD ><P > If set to 1, the realm name from the authenticated user principal is included in the system user name that's passed through user name mapping (<A HREF="auth-username-maps.html" >Section 19.2</A >). This is the recommended configuration as, otherwise, it is impossible to differentiate users with the same username who are from different realms. The default for this parameter is 0 (meaning to not include the realm in the system user name) but may change to 1 in a future version of <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN >. Users can set it explicitly to avoid any issues when upgrading. </P ></DD ><DT ><TT CLASS="LITERAL" >map</TT ></DT ><DD ><P > Allows for mapping between system and database user names. See <A HREF="auth-username-maps.html" >Section 19.2</A > for details. For a SSPI/Kerberos principal, such as <TT CLASS="LITERAL" >username@EXAMPLE.COM</TT > (or, less commonly, <TT CLASS="LITERAL" >username/hostbased@EXAMPLE.COM</TT >), the default user name used for mapping is <TT CLASS="LITERAL" >username</TT > (or <TT CLASS="LITERAL" >username/hostbased</TT >, respectively), unless <TT CLASS="LITERAL" >include_realm</TT > has been set to 1 (as recommended, see above), in which case <TT CLASS="LITERAL" >username@EXAMPLE.COM</TT > (or <TT CLASS="LITERAL" >username/hostbased@EXAMPLE.COM</TT >) is what is seen as the system username when mapping. </P ></DD ><DT ><TT CLASS="LITERAL" >krb_realm</TT ></DT ><DD ><P > Sets the realm to match user principal names against. If this parameter is set, only users of that realm will be accepted. If it is not set, users of any realm can connect, subject to whatever user name mapping is done. </P ></DD ></DL ></DIV ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="KERBEROS-AUTH" >19.3.5. Kerberos Authentication</A ></H2 ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > Native Kerberos authentication has been deprecated and should be used only for backward compatibility. New and upgraded installations are encouraged to use the industry-standard <SPAN CLASS="PRODUCTNAME" >GSSAPI</SPAN > authentication method (see <A HREF="auth-methods.html#GSSAPI-AUTH" >Section 19.3.3</A >) instead. </P ></BLOCKQUOTE ></DIV ><P > <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN > is an industry-standard secure authentication system suitable for distributed computing over a public network. A description of the <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN > system is beyond the scope of this document; in full generality it can be quite complex (yet powerful). The <A HREF="http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html" TARGET="_top" > Kerberos <ACRONYM CLASS="ACRONYM" >FAQ</ACRONYM ></A > or <A HREF="http://web.mit.edu/kerberos/www/" TARGET="_top" >MIT Kerberos page</A > can be good starting points for exploration. Several sources for <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN > distributions exist. <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN > provides secure authentication but does not encrypt queries or data passed over the network; for that use <ACRONYM CLASS="ACRONYM" >SSL</ACRONYM >. </P ><P > <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > supports Kerberos version 5. Kerberos support has to be enabled when <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > is built; see <A HREF="installation.html" >Chapter 15</A > for more information. </P ><P > <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > operates like a normal Kerberos service. The name of the service principal is <TT CLASS="LITERAL" ><TT CLASS="REPLACEABLE" ><I >servicename</I ></TT >/<TT CLASS="REPLACEABLE" ><I >hostname</I ></TT >@<TT CLASS="REPLACEABLE" ><I >realm</I ></TT ></TT >. </P ><P > <TT CLASS="REPLACEABLE" ><I >servicename</I ></TT > can be set on the server side using the <A HREF="runtime-config-connection.html#GUC-KRB-SRVNAME" >krb_srvname</A > configuration parameter, and on the client side using the <TT CLASS="LITERAL" >krbsrvname</TT > connection parameter. (See also <A HREF="libpq-connect.html" >Section 31.1</A >.) The installation default can be changed from the default <TT CLASS="LITERAL" >postgres</TT > at build time using <TT CLASS="LITERAL" >./configure --with-krb-srvnam=</TT ><TT CLASS="REPLACEABLE" ><I >whatever</I ></TT >. In most environments, this parameter never needs to be changed. However, it is necessary when supporting multiple <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > installations on the same host. Some Kerberos implementations might also require a different service name, such as Microsoft Active Directory which requires the service name to be in upper case (<TT CLASS="LITERAL" >POSTGRES</TT >). </P ><P > <TT CLASS="REPLACEABLE" ><I >hostname</I ></TT > is the fully qualified host name of the server machine. The service principal's realm is the preferred realm of the server machine. </P ><P > Client principals must have their <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > database user name as their first component, for example <TT CLASS="LITERAL" >pgusername@realm</TT >. Alternatively, you can use a user name mapping to map from the first component of the principal name to the database user name. By default, the realm of the client is not checked by <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN >. If you have cross-realm authentication enabled and need to verify the realm, use the <TT CLASS="LITERAL" >krb_realm</TT > parameter, or enable <TT CLASS="LITERAL" >include_realm</TT > and use user name mapping to check the realm. </P ><P > Make sure that your server keytab file is readable (and preferably only readable) by the <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > server account. (See also <A HREF="postgres-user.html" >Section 17.1</A >.) The location of the key file is specified by the <A HREF="runtime-config-connection.html#GUC-KRB-SERVER-KEYFILE" >krb_server_keyfile</A > configuration parameter. The default is <TT CLASS="FILENAME" >/usr/local/pgsql/etc/krb5.keytab</TT > (or whatever directory was specified as <TT CLASS="VARNAME" >sysconfdir</TT > at build time). </P ><P > The keytab file is generated by the Kerberos software; see the Kerberos documentation for details. The following example is for MIT-compatible Kerberos 5 implementations: </P><PRE CLASS="SCREEN" ><SAMP CLASS="PROMPT" >kadmin% </SAMP ><KBD CLASS="USERINPUT" >ank -randkey postgres/server.my.domain.org</KBD > <SAMP CLASS="PROMPT" >kadmin% </SAMP ><KBD CLASS="USERINPUT" >ktadd -k krb5.keytab postgres/server.my.domain.org</KBD ></PRE ><P> </P ><P > When connecting to the database make sure you have a ticket for a principal matching the requested database user name. For example, for database user name <TT CLASS="LITERAL" >fred</TT >, principal <TT CLASS="LITERAL" >fred@EXAMPLE.COM</TT > would be able to connect. To also allow principal <TT CLASS="LITERAL" >fred/users.example.com@EXAMPLE.COM</TT >, use a user name map, as described in <A HREF="auth-username-maps.html" >Section 19.2</A >. </P ><P > If you use <A HREF="http://modauthkerb.sf.net" TARGET="_top" > <SPAN CLASS="APPLICATION" >mod_auth_kerb</SPAN ></A > and <SPAN CLASS="APPLICATION" >mod_perl</SPAN > on your <SPAN CLASS="PRODUCTNAME" >Apache</SPAN > web server, you can use <TT CLASS="LITERAL" >AuthType KerberosV5SaveCredentials</TT > with a <SPAN CLASS="APPLICATION" >mod_perl</SPAN > script. This gives secure database access over the web, with no additional passwords required. </P ><P > The following configuration options are supported for <SPAN CLASS="PRODUCTNAME" >Kerberos</SPAN >: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >map</TT ></DT ><DD ><P > Allows for mapping between system and database user names. See <A HREF="auth-username-maps.html" >Section 19.2</A > for details. </P ></DD ><DT ><TT CLASS="LITERAL" >include_realm</TT ></DT ><DD ><P > If set to 1, the realm name from the authenticated user principal is included in the system user name that's passed through user name mapping (<A HREF="auth-username-maps.html" >Section 19.2</A >). This is useful for handling users from multiple realms. </P ></DD ><DT ><TT CLASS="LITERAL" >krb_realm</TT ></DT ><DD ><P > Sets the realm to match user principal names against. If this parameter is set, only users of that realm will be accepted. If it is not set, users of any realm can connect, subject to whatever user name mapping is done. </P ></DD ><DT ><TT CLASS="LITERAL" >krb_server_hostname</TT ></DT ><DD ><P > Sets the host name part of the service principal. This, combined with <TT CLASS="VARNAME" >krb_srvname</TT >, is used to generate the complete service principal, that is <TT CLASS="VARNAME" >krb_srvname</TT ><TT CLASS="LITERAL" >/</TT ><TT CLASS="VARNAME" >krb_server_hostname</TT ><TT CLASS="LITERAL" >@</TT >REALM. If not set, the default is the server host name. </P ></DD ></DL ></DIV ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-IDENT" >19.3.6. Ident Authentication</A ></H2 ><P > The ident authentication method works by obtaining the client's operating system user name from an ident server and using it as the allowed database user name (with an optional user name mapping). This is only supported on TCP/IP connections. </P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > When ident is specified for a local (non-TCP/IP) connection, peer authentication (see <A HREF="auth-methods.html#AUTH-PEER" >Section 19.3.7</A >) will be used instead. </P ></BLOCKQUOTE ></DIV ><P > The following configuration options are supported for <SPAN CLASS="PRODUCTNAME" >ident</SPAN >: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >map</TT ></DT ><DD ><P > Allows for mapping between system and database user names. See <A HREF="auth-username-maps.html" >Section 19.2</A > for details. </P ></DD ></DL ></DIV ><P> </P ><P > The <SPAN CLASS="QUOTE" >"Identification Protocol"</SPAN > is described in RFC 1413. Virtually every Unix-like operating system ships with an ident server that listens on TCP port 113 by default. The basic functionality of an ident server is to answer questions like <SPAN CLASS="QUOTE" >"What user initiated the connection that goes out of your port <TT CLASS="REPLACEABLE" ><I >X</I ></TT > and connects to my port <TT CLASS="REPLACEABLE" ><I >Y</I ></TT >?"</SPAN >. Since <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > knows both <TT CLASS="REPLACEABLE" ><I >X</I ></TT > and <TT CLASS="REPLACEABLE" ><I >Y</I ></TT > when a physical connection is established, it can interrogate the ident server on the host of the connecting client and can theoretically determine the operating system user for any given connection. </P ><P > The drawback of this procedure is that it depends on the integrity of the client: if the client machine is untrusted or compromised, an attacker could run just about any program on port 113 and return any user name he chooses. This authentication method is therefore only appropriate for closed networks where each client machine is under tight control and where the database and system administrators operate in close contact. In other words, you must trust the machine running the ident server. Heed the warning: <A NAME="AEN32161" ></A ><TABLE BORDER="0" WIDTH="100%" CELLSPACING="0" CELLPADDING="0" CLASS="BLOCKQUOTE" ><TR ><TD WIDTH="10%" VALIGN="TOP" > </TD ><TD VALIGN="TOP" ><P > The Identification Protocol is not intended as an authorization or access control protocol. </P ></TD ><TD WIDTH="10%" VALIGN="TOP" > </TD ></TR ><TR ><TD COLSPAN="2" ALIGN="RIGHT" VALIGN="TOP" >--<SPAN CLASS="ATTRIBUTION" >RFC 1413</SPAN ></TD ><TD WIDTH="10%" > </TD ></TR ></TABLE > </P ><P > Some ident servers have a nonstandard option that causes the returned user name to be encrypted, using a key that only the originating machine's administrator knows. This option <SPAN CLASS="emphasis" ><I CLASS="EMPHASIS" >must not</I ></SPAN > be used when using the ident server with <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN >, since <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > does not have any way to decrypt the returned string to determine the actual user name. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-PEER" >19.3.7. Peer Authentication</A ></H2 ><P > The peer authentication method works by obtaining the client's operating system user name from the kernel and using it as the allowed database user name (with optional user name mapping). This method is only supported on local connections. </P ><P > The following configuration options are supported for <SPAN CLASS="PRODUCTNAME" >peer</SPAN >: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >map</TT ></DT ><DD ><P > Allows for mapping between system and database user names. See <A HREF="auth-username-maps.html" >Section 19.2</A > for details. </P ></DD ></DL ></DIV ><P> </P ><P > Peer authentication is only available on operating systems providing the <CODE CLASS="FUNCTION" >getpeereid()</CODE > function, the <TT CLASS="SYMBOL" >SO_PEERCRED</TT > socket parameter, or similar mechanisms. Currently that includes <SPAN CLASS="SYSTEMITEM" >Linux</SPAN >, most flavors of <SPAN CLASS="SYSTEMITEM" >BSD</SPAN > including <SPAN CLASS="SYSTEMITEM" >Mac OS X</SPAN >, and <SPAN CLASS="SYSTEMITEM" >Solaris</SPAN >. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-LDAP" >19.3.8. LDAP Authentication</A ></H2 ><P > This authentication method operates similarly to <TT CLASS="LITERAL" >password</TT > except that it uses LDAP as the password verification method. LDAP is used only to validate the user name/password pairs. Therefore the user must already exist in the database before LDAP can be used for authentication. </P ><P > LDAP authentication can operate in two modes. In the first mode, the server will bind to the distinguished name constructed as <TT CLASS="REPLACEABLE" ><I >prefix</I ></TT > <TT CLASS="REPLACEABLE" ><I >username</I ></TT > <TT CLASS="REPLACEABLE" ><I >suffix</I ></TT >. Typically, the <TT CLASS="REPLACEABLE" ><I >prefix</I ></TT > parameter is used to specify <TT CLASS="LITERAL" >cn=</TT >, or <TT CLASS="REPLACEABLE" ><I >DOMAIN</I ></TT ><TT CLASS="LITERAL" >\</TT > in an Active Directory environment. <TT CLASS="REPLACEABLE" ><I >suffix</I ></TT > is used to specify the remaining part of the DN in a non-Active Directory environment. </P ><P > In the second mode, the server first binds to the LDAP directory with a fixed user name and password, specified with <TT CLASS="REPLACEABLE" ><I >ldapbinddn</I ></TT > and <TT CLASS="REPLACEABLE" ><I >ldapbindpasswd</I ></TT >, and performs a search for the user trying to log in to the database. If no user and password is configured, an anonymous bind will be attempted to the directory. The search will be performed over the subtree at <TT CLASS="REPLACEABLE" ><I >ldapbasedn</I ></TT >, and will try to do an exact match of the attribute specified in <TT CLASS="REPLACEABLE" ><I >ldapsearchattribute</I ></TT >. If no attribute is specified, the <TT CLASS="LITERAL" >uid</TT > attribute will be used. Once the user has been found in this search, the server disconnects and re-binds to the directory as this user, using the password specified by the client, to verify that the login is correct. This method allows for significantly more flexibility in where the user objects are located in the directory, but will cause two separate connections to the LDAP server to be made. </P ><P > The following configuration options are supported for LDAP: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >ldapserver</TT ></DT ><DD ><P > Names or IP addresses of LDAP servers to connect to. Multiple servers may be specified, separated by spaces. </P ></DD ><DT ><TT CLASS="LITERAL" >ldapport</TT ></DT ><DD ><P > Port number on LDAP server to connect to. If no port is specified, the LDAP library's default port setting will be used. </P ></DD ><DT ><TT CLASS="LITERAL" >ldaptls</TT ></DT ><DD ><P > Set to 1 to make the connection between PostgreSQL and the LDAP server use TLS encryption. Note that this only encrypts the traffic to the LDAP server — the connection to the client will still be unencrypted unless SSL is used. </P ></DD ><DT ><TT CLASS="LITERAL" >ldapprefix</TT ></DT ><DD ><P > String to prepend to the user name when forming the DN to bind as, when doing simple bind authentication. </P ></DD ><DT ><TT CLASS="LITERAL" >ldapsuffix</TT ></DT ><DD ><P > String to append to the user name when forming the DN to bind as, when doing simple bind authentication. </P ></DD ><DT ><TT CLASS="LITERAL" >ldapbasedn</TT ></DT ><DD ><P > Root DN to begin the search for the user in, when doing search+bind authentication. </P ></DD ><DT ><TT CLASS="LITERAL" >ldapbinddn</TT ></DT ><DD ><P > DN of user to bind to the directory with to perform the search when doing search+bind authentication. </P ></DD ><DT ><TT CLASS="LITERAL" >ldapbindpasswd</TT ></DT ><DD ><P > Password for user to bind to the directory with to perform the search when doing search+bind authentication. </P ></DD ><DT ><TT CLASS="LITERAL" >ldapsearchattribute</TT ></DT ><DD ><P > Attribute to match against the user name in the search when doing search+bind authentication. </P ></DD ></DL ></DIV ><P> </P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > Since LDAP often uses commas and spaces to separate the different parts of a DN, it is often necessary to use double-quoted parameter values when configuring LDAP options, for example: </P><PRE CLASS="PROGRAMLISTING" >ldapserver=ldap.example.net ldapprefix="cn=" ldapsuffix=", dc=example, dc=net"</PRE ><P> </P ></BLOCKQUOTE ></DIV ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-RADIUS" >19.3.9. RADIUS Authentication</A ></H2 ><P > This authentication method operates similarly to <TT CLASS="LITERAL" >password</TT > except that it uses RADIUS as the password verification method. RADIUS is used only to validate the user name/password pairs. Therefore the user must already exist in the database before RADIUS can be used for authentication. </P ><P > When using RADIUS authentication, an Access Request message will be sent to the configured RADIUS server. This request will be of type <TT CLASS="LITERAL" >Authenticate Only</TT >, and include parameters for <TT CLASS="LITERAL" >user name</TT >, <TT CLASS="LITERAL" >password</TT > (encrypted) and <TT CLASS="LITERAL" >NAS Identifier</TT >. The request will be encrypted using a secret shared with the server. The RADIUS server will respond to this server with either <TT CLASS="LITERAL" >Access Accept</TT > or <TT CLASS="LITERAL" >Access Reject</TT >. There is no support for RADIUS accounting. </P ><P > The following configuration options are supported for RADIUS: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >radiusserver</TT ></DT ><DD ><P > The name or IP address of the RADIUS server to connect to. This parameter is required. </P ></DD ><DT ><TT CLASS="LITERAL" >radiussecret</TT ></DT ><DD ><P > The shared secret used when talking securely to the RADIUS server. This must have exactly the same value on the PostgreSQL and RADIUS servers. It is recommended that this be a string of at least 16 characters. This parameter is required. </P><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > The encryption vector used will only be cryptographically strong if <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > is built with support for <SPAN CLASS="PRODUCTNAME" >OpenSSL</SPAN >. In other cases, the transmission to the RADIUS server should only be considered obfuscated, not secured, and external security measures should be applied if necessary. </P ></BLOCKQUOTE ></DIV ><P> </P ></DD ><DT ><TT CLASS="LITERAL" >radiusport</TT ></DT ><DD ><P > The port number on the RADIUS server to connect to. If no port is specified, the default port <TT CLASS="LITERAL" >1812</TT > will be used. </P ></DD ><DT ><TT CLASS="LITERAL" >radiusidentifier</TT ></DT ><DD ><P > The string used as <TT CLASS="LITERAL" >NAS Identifier</TT > in the RADIUS requests. This parameter can be used as a second parameter identifying for example which database user the user is attempting to authenticate as, which can be used for policy matching on the RADIUS server. If no identifier is specified, the default <TT CLASS="LITERAL" >postgresql</TT > will be used. </P ></DD ></DL ></DIV ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-CERT" >19.3.10. Certificate Authentication</A ></H2 ><P > This authentication method uses SSL client certificates to perform authentication. It is therefore only available for SSL connections. When using this authentication method, the server will require that the client provide a valid certificate. No password prompt will be sent to the client. The <TT CLASS="LITERAL" >cn</TT > (Common Name) attribute of the certificate will be compared to the requested database user name, and if they match the login will be allowed. User name mapping can be used to allow <TT CLASS="LITERAL" >cn</TT > to be different from the database user name. </P ><P > The following configuration options are supported for SSL certificate authentication: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >map</TT ></DT ><DD ><P > Allows for mapping between system and database user names. See <A HREF="auth-username-maps.html" >Section 19.2</A > for details. </P ></DD ></DL ></DIV ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AUTH-PAM" >19.3.11. PAM Authentication</A ></H2 ><P > This authentication method operates similarly to <TT CLASS="LITERAL" >password</TT > except that it uses PAM (Pluggable Authentication Modules) as the authentication mechanism. The default PAM service name is <TT CLASS="LITERAL" >postgresql</TT >. PAM is used only to validate user name/password pairs. Therefore the user must already exist in the database before PAM can be used for authentication. For more information about PAM, please read the <A HREF="http://www.kernel.org/pub/linux/libs/pam/" TARGET="_top" > <SPAN CLASS="PRODUCTNAME" >Linux-PAM</SPAN > Page</A > and the <A HREF="http://www.sun.com/software/solaris/pam/" TARGET="_top" > <SPAN CLASS="SYSTEMITEM" >Solaris</SPAN > PAM Page</A >. </P ><P > The following configuration options are supported for PAM: <P ></P ></P><DIV CLASS="VARIABLELIST" ><DL ><DT ><TT CLASS="LITERAL" >pamservice</TT ></DT ><DD ><P > PAM service name. </P ></DD ></DL ></DIV ><P> </P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > If PAM is set up to read <TT CLASS="FILENAME" >/etc/shadow</TT >, authentication will fail because the PostgreSQL server is started by a non-root user. However, this is not an issue when PAM is configured to use LDAP or other authentication methods. </P ></BLOCKQUOTE ></DIV ></DIV ></DIV ><DIV CLASS="NAVFOOTER" ><HR ALIGN="LEFT" WIDTH="100%"><TABLE SUMMARY="Footer navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" ><A HREF="auth-username-maps.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="index.html" ACCESSKEY="H" >Home</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" ><A HREF="client-authentication-problems.html" ACCESSKEY="N" >Next</A ></TD ></TR ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" >User Name Maps</TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="client-authentication.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" >Authentication Problems</TD ></TR ></TABLE ></DIV ></BODY ></HTML >