Server IP : 103.119.228.120 / Your IP : 18.116.20.108 Web Server : Apache System : Linux v8.techscape8.com 3.10.0-1160.119.1.el7.tuxcare.els2.x86_64 #1 SMP Mon Jul 15 12:09:18 UTC 2024 x86_64 User : nobody ( 99) PHP Version : 5.6.40 Disable Function : shell_exec,symlink,system,exec,proc_get_status,proc_nice,proc_terminate,define_syslog_variables,syslog,openlog,closelog,escapeshellcmd,passthru,ocinum cols,ini_alter,leak,listen,chgrp,apache_note,apache_setenv,debugger_on,debugger_off,ftp_exec,dl,dll,myshellexec,proc_open,socket_bind,proc_close,escapeshellarg,parse_ini_filepopen,fpassthru,exec,passthru,escapeshellarg,escapeshellcmd,proc_close,proc_open,ini_alter,popen,show_source,proc_nice,proc_terminate,proc_get_status,proc_close,pfsockopen,leak,apache_child_terminate,posix_kill,posix_mkfifo,posix_setpgid,posix_setsid,posix_setuid,dl,symlink,shell_exec,system,dl,passthru,escapeshellarg,escapeshellcmd,myshellexec,c99_buff_prepare,c99_sess_put,fpassthru,getdisfunc,fx29exec,fx29exec2,is_windows,disp_freespace,fx29sh_getupdate,fx29_buff_prepare,fx29_sess_put,fx29shexit,fx29fsearch,fx29ftpbrutecheck,fx29sh_tools,fx29sh_about,milw0rm,imagez,sh_name,myshellexec,checkproxyhost,dosyayicek,c99_buff_prepare,c99_sess_put,c99getsource,c99sh_getupdate,c99fsearch,c99shexit,view_perms,posix_getpwuid,posix_getgrgid,posix_kill,parse_perms,parsesort,view_perms_color,set_encoder_input,ls_setcheckboxall,ls_reverse_all,rsg_read,rsg_glob,selfURL,dispsecinfo,unix2DosTime,addFile,system,get_users,view_size,DirFiles,DirFilesWide,DirPrintHTMLHeaders,GetFilesTotal,GetTitles,GetTimeTotal,GetMatchesCount,GetFileMatchesCount,GetResultFiles,fs_copy_dir,fs_copy_obj,fs_move_dir,fs_move_obj,fs_rmdir,SearchText,getmicrotime MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /usr/local/ssl/local/ssl/share/doc/postgresql-9.2.24/html/ |
Upload File : |
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML ><HEAD ><TITLE >pg_trgm</TITLE ><META NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK REV="MADE" HREF="mailto:pgsql-docs@postgresql.org"><LINK REL="HOME" TITLE="PostgreSQL 9.2.24 Documentation" HREF="index.html"><LINK REL="UP" TITLE="Additional Supplied Modules" HREF="contrib.html"><LINK REL="PREVIOUS" TITLE="pgstattuple" HREF="pgstattuple.html"><LINK REL="NEXT" TITLE="seg" HREF="seg.html"><LINK REL="STYLESHEET" TYPE="text/css" HREF="stylesheet.css"><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1"><META NAME="creation" CONTENT="2017-11-06T22:43:11"></HEAD ><BODY CLASS="SECT1" ><DIV CLASS="NAVHEADER" ><TABLE SUMMARY="Header navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TH COLSPAN="5" ALIGN="center" VALIGN="bottom" ><A HREF="index.html" >PostgreSQL 9.2.24 Documentation</A ></TH ></TR ><TR ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A TITLE="pgstattuple" HREF="pgstattuple.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A HREF="contrib.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="60%" ALIGN="center" VALIGN="bottom" >Appendix F. Additional Supplied Modules</TD ><TD WIDTH="20%" ALIGN="right" VALIGN="top" ><A TITLE="seg" HREF="seg.html" ACCESSKEY="N" >Next</A ></TD ></TR ></TABLE ><HR ALIGN="LEFT" WIDTH="100%"></DIV ><DIV CLASS="SECT1" ><H1 CLASS="SECT1" ><A NAME="PGTRGM" >F.30. pg_trgm</A ></H1 ><P > The <TT CLASS="FILENAME" >pg_trgm</TT > module provides functions and operators for determining the similarity of <ACRONYM CLASS="ACRONYM" >ASCII</ACRONYM > alphanumeric text based on trigram matching, as well as index operator classes that support fast searching for similar strings. </P ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN151432" >F.30.1. Trigram (or Trigraph) Concepts</A ></H2 ><P > A trigram is a group of three consecutive characters taken from a string. We can measure the similarity of two strings by counting the number of trigrams they share. This simple idea turns out to be very effective for measuring the similarity of words in many natural languages. </P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > A string is considered to have two spaces prefixed and one space suffixed when determining the set of trigrams contained in the string. For example, the set of trigrams in the string <SPAN CLASS="QUOTE" >"<TT CLASS="LITERAL" >cat</TT >"</SPAN > is <SPAN CLASS="QUOTE" >"<TT CLASS="LITERAL" > c</TT >"</SPAN >, <SPAN CLASS="QUOTE" >"<TT CLASS="LITERAL" > ca</TT >"</SPAN >, <SPAN CLASS="QUOTE" >"<TT CLASS="LITERAL" >cat</TT >"</SPAN >, and <SPAN CLASS="QUOTE" >"<TT CLASS="LITERAL" >at </TT >"</SPAN >. </P ></BLOCKQUOTE ></DIV ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN151447" >F.30.2. Functions and Operators</A ></H2 ><P > The functions provided by the <TT CLASS="FILENAME" >pg_trgm</TT > module are shown in <A HREF="pgtrgm.html#PGTRGM-FUNC-TABLE" >Table F-24</A >, the operators in <A HREF="pgtrgm.html#PGTRGM-OP-TABLE" >Table F-25</A >. </P ><DIV CLASS="TABLE" ><A NAME="PGTRGM-FUNC-TABLE" ></A ><P ><B >Table F-24. <TT CLASS="FILENAME" >pg_trgm</TT > Functions</B ></P ><TABLE BORDER="1" CLASS="CALSTABLE" ><COL><COL><COL><THEAD ><TR ><TH >Function</TH ><TH >Returns</TH ><TH >Description</TH ></TR ></THEAD ><TBODY ><TR ><TD ><CODE CLASS="FUNCTION" >similarity(text, text)</CODE ></TD ><TD ><TT CLASS="TYPE" >real</TT ></TD ><TD > Returns a number that indicates how similar the two arguments are. The range of the result is zero (indicating that the two strings are completely dissimilar) to one (indicating that the two strings are identical). </TD ></TR ><TR ><TD ><CODE CLASS="FUNCTION" >show_trgm(text)</CODE ></TD ><TD ><TT CLASS="TYPE" >text[]</TT ></TD ><TD > Returns an array of all the trigrams in the given string. (In practice this is seldom useful except for debugging.) </TD ></TR ><TR ><TD ><CODE CLASS="FUNCTION" >show_limit()</CODE ></TD ><TD ><TT CLASS="TYPE" >real</TT ></TD ><TD > Returns the current similarity threshold used by the <TT CLASS="LITERAL" >%</TT > operator. This sets the minimum similarity between two words for them to be considered similar enough to be misspellings of each other, for example. </TD ></TR ><TR ><TD ><CODE CLASS="FUNCTION" >set_limit(real)</CODE ></TD ><TD ><TT CLASS="TYPE" >real</TT ></TD ><TD > Sets the current similarity threshold that is used by the <TT CLASS="LITERAL" >%</TT > operator. The threshold must be between 0 and 1 (default is 0.3). Returns the same value passed in. </TD ></TR ></TBODY ></TABLE ></DIV ><DIV CLASS="TABLE" ><A NAME="PGTRGM-OP-TABLE" ></A ><P ><B >Table F-25. <TT CLASS="FILENAME" >pg_trgm</TT > Operators</B ></P ><TABLE BORDER="1" CLASS="CALSTABLE" ><COL><COL><COL><THEAD ><TR ><TH >Operator</TH ><TH >Returns</TH ><TH >Description</TH ></TR ></THEAD ><TBODY ><TR ><TD ><TT CLASS="TYPE" >text</TT > <TT CLASS="LITERAL" >%</TT > <TT CLASS="TYPE" >text</TT ></TD ><TD ><TT CLASS="TYPE" >boolean</TT ></TD ><TD > Returns <TT CLASS="LITERAL" >true</TT > if its arguments have a similarity that is greater than the current similarity threshold set by <CODE CLASS="FUNCTION" >set_limit</CODE >. </TD ></TR ><TR ><TD ><TT CLASS="TYPE" >text</TT > <TT CLASS="LITERAL" ><-></TT > <TT CLASS="TYPE" >text</TT ></TD ><TD ><TT CLASS="TYPE" >real</TT ></TD ><TD > Returns the <SPAN CLASS="QUOTE" >"distance"</SPAN > between the arguments, that is one minus the <CODE CLASS="FUNCTION" >similarity()</CODE > value. </TD ></TR ></TBODY ></TABLE ></DIV ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN151519" >F.30.3. Index Support</A ></H2 ><P > The <TT CLASS="FILENAME" >pg_trgm</TT > module provides GiST and GIN index operator classes that allow you to create an index over a text column for the purpose of very fast similarity searches. These index types support the above-described similarity operators, and additionally support trigram-based index searches for <TT CLASS="LITERAL" >LIKE</TT > and <TT CLASS="LITERAL" >ILIKE</TT > queries. (These indexes do not support equality nor simple comparison operators, so you may need a regular B-tree index too.) </P ><P > Example: </P><PRE CLASS="PROGRAMLISTING" >CREATE TABLE test_trgm (t text); CREATE INDEX trgm_idx ON test_trgm USING gist (t gist_trgm_ops);</PRE ><P> or </P><PRE CLASS="PROGRAMLISTING" >CREATE INDEX trgm_idx ON test_trgm USING gin (t gin_trgm_ops);</PRE ><P> </P ><P > At this point, you will have an index on the <TT CLASS="STRUCTFIELD" >t</TT > column that you can use for similarity searching. A typical query is </P><PRE CLASS="PROGRAMLISTING" >SELECT t, similarity(t, '<TT CLASS="REPLACEABLE" ><I >word</I ></TT >') AS sml FROM test_trgm WHERE t % '<TT CLASS="REPLACEABLE" ><I >word</I ></TT >' ORDER BY sml DESC, t;</PRE ><P> This will return all values in the text column that are sufficiently similar to <TT CLASS="REPLACEABLE" ><I >word</I ></TT >, sorted from best match to worst. The index will be used to make this a fast operation even over very large data sets. </P ><P > A variant of the above query is </P><PRE CLASS="PROGRAMLISTING" >SELECT t, t <-> '<TT CLASS="REPLACEABLE" ><I >word</I ></TT >' AS dist FROM test_trgm ORDER BY dist LIMIT 10;</PRE ><P> This can be implemented quite efficiently by GiST indexes, but not by GIN indexes. It will usually beat the first formulation when only a small number of the closest matches is wanted. </P ><P > Beginning in <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > 9.1, these index types also support index searches for <TT CLASS="LITERAL" >LIKE</TT > and <TT CLASS="LITERAL" >ILIKE</TT >, for example </P><PRE CLASS="PROGRAMLISTING" >SELECT * FROM test_trgm WHERE t LIKE '%foo%bar';</PRE ><P> The index search works by extracting trigrams from the search string and then looking these up in the index. The more trigrams in the search string, the more effective the index search is. Unlike B-tree based searches, the search string need not be left-anchored. </P ><P > The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST and GIN, which are discussed elsewhere. As a rule of thumb, a GIN index is faster to search than a GiST index, but slower to build or update; so GIN is better suited for static data and GiST for often-updated data. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN151543" >F.30.4. Text Search Integration</A ></H2 ><P > Trigram matching is a very useful tool when used in conjunction with a full text index. In particular it can help to recognize misspelled input words that will not be matched directly by the full text search mechanism. </P ><P > The first step is to generate an auxiliary table containing all the unique words in the documents: </P><PRE CLASS="PROGRAMLISTING" >CREATE TABLE words AS SELECT word FROM ts_stat('SELECT to_tsvector(''simple'', bodytext) FROM documents');</PRE ><P> where <TT CLASS="STRUCTNAME" >documents</TT > is a table that has a text field <TT CLASS="STRUCTFIELD" >bodytext</TT > that we wish to search. The reason for using the <TT CLASS="LITERAL" >simple</TT > configuration with the <CODE CLASS="FUNCTION" >to_tsvector</CODE > function, instead of using a language-specific configuration, is that we want a list of the original (unstemmed) words. </P ><P > Next, create a trigram index on the word column: </P><PRE CLASS="PROGRAMLISTING" >CREATE INDEX words_idx ON words USING gin(word gin_trgm_ops);</PRE ><P> Now, a <TT CLASS="COMMAND" >SELECT</TT > query similar to the previous example can be used to suggest spellings for misspelled words in user search terms. A useful extra test is to require that the selected words are also of similar length to the misspelled word. </P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > Since the <TT CLASS="STRUCTNAME" >words</TT > table has been generated as a separate, static table, it will need to be periodically regenerated so that it remains reasonably up-to-date with the document collection. Keeping it exactly current is usually unnecessary. </P ></BLOCKQUOTE ></DIV ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN151558" >F.30.5. References</A ></H2 ><P > GiST Development Site <A HREF="http://www.sai.msu.su/~megera/postgres/gist/" TARGET="_top" >http://www.sai.msu.su/~megera/postgres/gist/</A > </P ><P > Tsearch2 Development Site <A HREF="http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/" TARGET="_top" >http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/</A > </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN151564" >F.30.6. Authors</A ></H2 ><P > Oleg Bartunov <CODE CLASS="EMAIL" ><<A HREF="mailto:oleg@sai.msu.su" >oleg@sai.msu.su</A >></CODE >, Moscow, Moscow University, Russia </P ><P > Teodor Sigaev <CODE CLASS="EMAIL" ><<A HREF="mailto:teodor@sigaev.ru" >teodor@sigaev.ru</A >></CODE >, Moscow, Delta-Soft Ltd.,Russia </P ><P > Documentation: Christopher Kings-Lynne </P ><P > This module is sponsored by Delta-Soft Ltd., Moscow, Russia. </P ></DIV ></DIV ><DIV CLASS="NAVFOOTER" ><HR ALIGN="LEFT" WIDTH="100%"><TABLE SUMMARY="Footer navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" ><A HREF="pgstattuple.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="index.html" ACCESSKEY="H" >Home</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" ><A HREF="seg.html" ACCESSKEY="N" >Next</A ></TD ></TR ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" >pgstattuple</TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="contrib.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" >seg</TD ></TR ></TABLE ></DIV ></BODY ></HTML >