Server IP : 103.119.228.120 / Your IP : 3.142.98.60 Web Server : Apache System : Linux v8.techscape8.com 3.10.0-1160.119.1.el7.tuxcare.els2.x86_64 #1 SMP Mon Jul 15 12:09:18 UTC 2024 x86_64 User : nobody ( 99) PHP Version : 5.6.40 Disable Function : shell_exec,symlink,system,exec,proc_get_status,proc_nice,proc_terminate,define_syslog_variables,syslog,openlog,closelog,escapeshellcmd,passthru,ocinum cols,ini_alter,leak,listen,chgrp,apache_note,apache_setenv,debugger_on,debugger_off,ftp_exec,dl,dll,myshellexec,proc_open,socket_bind,proc_close,escapeshellarg,parse_ini_filepopen,fpassthru,exec,passthru,escapeshellarg,escapeshellcmd,proc_close,proc_open,ini_alter,popen,show_source,proc_nice,proc_terminate,proc_get_status,proc_close,pfsockopen,leak,apache_child_terminate,posix_kill,posix_mkfifo,posix_setpgid,posix_setsid,posix_setuid,dl,symlink,shell_exec,system,dl,passthru,escapeshellarg,escapeshellcmd,myshellexec,c99_buff_prepare,c99_sess_put,fpassthru,getdisfunc,fx29exec,fx29exec2,is_windows,disp_freespace,fx29sh_getupdate,fx29_buff_prepare,fx29_sess_put,fx29shexit,fx29fsearch,fx29ftpbrutecheck,fx29sh_tools,fx29sh_about,milw0rm,imagez,sh_name,myshellexec,checkproxyhost,dosyayicek,c99_buff_prepare,c99_sess_put,c99getsource,c99sh_getupdate,c99fsearch,c99shexit,view_perms,posix_getpwuid,posix_getgrgid,posix_kill,parse_perms,parsesort,view_perms_color,set_encoder_input,ls_setcheckboxall,ls_reverse_all,rsg_read,rsg_glob,selfURL,dispsecinfo,unix2DosTime,addFile,system,get_users,view_size,DirFiles,DirFilesWide,DirPrintHTMLHeaders,GetFilesTotal,GetTitles,GetTimeTotal,GetMatchesCount,GetFileMatchesCount,GetResultFiles,fs_copy_dir,fs_copy_obj,fs_move_dir,fs_move_obj,fs_rmdir,SearchText,getmicrotime MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /usr/lib/mysqlsh/lib/python3.9/site-packages/oci/generative_ai/models/ |
Upload File : |
# coding: utf-8 # Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. # NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20231130 from .training_config import TrainingConfig from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class LoraTrainingConfig(TrainingConfig): """ The Lora training method hyperparameters. """ def __init__(self, **kwargs): """ Initializes a new LoraTrainingConfig object with values from keyword arguments. The default value of the :py:attr:`~oci.generative_ai.models.LoraTrainingConfig.training_config_type` attribute of this class is ``LORA_TRAINING_CONFIG`` and it should not be changed. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param training_config_type: The value to assign to the training_config_type property of this LoraTrainingConfig. Allowed values for this property are: "TFEW_TRAINING_CONFIG", "VANILLA_TRAINING_CONFIG", "LORA_TRAINING_CONFIG" :type training_config_type: str :param total_training_epochs: The value to assign to the total_training_epochs property of this LoraTrainingConfig. :type total_training_epochs: int :param learning_rate: The value to assign to the learning_rate property of this LoraTrainingConfig. :type learning_rate: float :param training_batch_size: The value to assign to the training_batch_size property of this LoraTrainingConfig. :type training_batch_size: int :param early_stopping_patience: The value to assign to the early_stopping_patience property of this LoraTrainingConfig. :type early_stopping_patience: int :param early_stopping_threshold: The value to assign to the early_stopping_threshold property of this LoraTrainingConfig. :type early_stopping_threshold: float :param log_model_metrics_interval_in_steps: The value to assign to the log_model_metrics_interval_in_steps property of this LoraTrainingConfig. :type log_model_metrics_interval_in_steps: int :param lora_r: The value to assign to the lora_r property of this LoraTrainingConfig. :type lora_r: int :param lora_alpha: The value to assign to the lora_alpha property of this LoraTrainingConfig. :type lora_alpha: int :param lora_dropout: The value to assign to the lora_dropout property of this LoraTrainingConfig. :type lora_dropout: float """ self.swagger_types = { 'training_config_type': 'str', 'total_training_epochs': 'int', 'learning_rate': 'float', 'training_batch_size': 'int', 'early_stopping_patience': 'int', 'early_stopping_threshold': 'float', 'log_model_metrics_interval_in_steps': 'int', 'lora_r': 'int', 'lora_alpha': 'int', 'lora_dropout': 'float' } self.attribute_map = { 'training_config_type': 'trainingConfigType', 'total_training_epochs': 'totalTrainingEpochs', 'learning_rate': 'learningRate', 'training_batch_size': 'trainingBatchSize', 'early_stopping_patience': 'earlyStoppingPatience', 'early_stopping_threshold': 'earlyStoppingThreshold', 'log_model_metrics_interval_in_steps': 'logModelMetricsIntervalInSteps', 'lora_r': 'loraR', 'lora_alpha': 'loraAlpha', 'lora_dropout': 'loraDropout' } self._training_config_type = None self._total_training_epochs = None self._learning_rate = None self._training_batch_size = None self._early_stopping_patience = None self._early_stopping_threshold = None self._log_model_metrics_interval_in_steps = None self._lora_r = None self._lora_alpha = None self._lora_dropout = None self._training_config_type = 'LORA_TRAINING_CONFIG' @property def lora_r(self): """ Gets the lora_r of this LoraTrainingConfig. This parameter represents the LoRA rank of the update matrices. :return: The lora_r of this LoraTrainingConfig. :rtype: int """ return self._lora_r @lora_r.setter def lora_r(self, lora_r): """ Sets the lora_r of this LoraTrainingConfig. This parameter represents the LoRA rank of the update matrices. :param lora_r: The lora_r of this LoraTrainingConfig. :type: int """ self._lora_r = lora_r @property def lora_alpha(self): """ Gets the lora_alpha of this LoraTrainingConfig. This parameter represents the scaling factor for the weight matrices in LoRA. :return: The lora_alpha of this LoraTrainingConfig. :rtype: int """ return self._lora_alpha @lora_alpha.setter def lora_alpha(self, lora_alpha): """ Sets the lora_alpha of this LoraTrainingConfig. This parameter represents the scaling factor for the weight matrices in LoRA. :param lora_alpha: The lora_alpha of this LoraTrainingConfig. :type: int """ self._lora_alpha = lora_alpha @property def lora_dropout(self): """ Gets the lora_dropout of this LoraTrainingConfig. This parameter indicates the dropout probability for LoRA layers. :return: The lora_dropout of this LoraTrainingConfig. :rtype: float """ return self._lora_dropout @lora_dropout.setter def lora_dropout(self, lora_dropout): """ Sets the lora_dropout of this LoraTrainingConfig. This parameter indicates the dropout probability for LoRA layers. :param lora_dropout: The lora_dropout of this LoraTrainingConfig. :type: float """ self._lora_dropout = lora_dropout def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other